Inositol-Requiring Enzyme 1-Dependent Activation of AMPK Promotes Brucella abortus Intracellular Growth.
نویسندگان
چکیده
UNLABELLED AMP-activated protein kinase (AMPK) is a serine/threonine kinase that is well conserved during evolution. AMPK activation inhibits production of reactive oxygen species (ROS) in cells via suppression of NADPH oxidase. However, the role of AMPK during the process of Brucella infection remains unknown. Our data demonstrate that B. abortus infection induces AMPK activation in HeLa cells in a time-dependent manner. The known AMPK kinases LKB1, CAMKKβ, and TAK1 are not required for the activation of AMPK by B. abortus infection. Instead, this activation is dependent on the RNase activity of inositol-requiring enzyme 1 (IRE1). Moreover, we also found that B. abortus infection-induced IRE1-dependent activation of AMPK promotes B. abortus intracellular growth with peritoneal macrophages via suppression of NADPH-derived ROS production. IMPORTANCE Previous studies showed that B. abortus infection does not promote any oxidative burst regulated by NADPH oxidase. However, the underlying mechanism remains elusive. We report for the first time that AMPK activation caused by B. abortus infection plays important role in NADPH oxidase-derived ROS production.
منابع مشابه
RNAi Screen of Endoplasmic Reticulum–Associated Host Factors Reveals a Role for IRE1α in Supporting Brucella Replication
Brucella species are facultative intracellular bacterial pathogens that cause brucellosis, a global zoonosis of profound importance. Although recent studies have demonstrated that Brucella spp. replicate within an intracellular compartment that contains endoplasmic reticulum (ER) resident proteins, the molecular mechanisms by which the pathogen secures this replicative niche remain obscure. Her...
متن کاملA T4SS Effector Targets Host Cell Alpha-Enolase Contributing to Brucella abortus Intracellular Lifestyle
Brucella abortus, the causative agent of bovine brucellosis, invades and replicates within cells inside a membrane-bound compartment known as the Brucella containing vacuole (BCV). After trafficking along the endocytic and secretory pathways, BCVs mature into endoplasmic reticulum-derived compartments permissive for bacterial replication. Brucella Type IV Secretion System (VirB) is a major viru...
متن کاملThe effects of red ginseng saponin fraction-A (RGSF-A) on phagocytosis and intracellular signaling in Brucella abortus infected RAW 264.7 cells.
This study indicated that RGSF-A caused a marked reduction in the adherence, internalization and intracellular growth of Brucella abortus in RGSF-A-treated cells. Furthermore, a decline in the intensity of F-actin fluorescence was observed in RGSF-A-treated cells compared with untreated B. abortus-infected cells. In addition, an evaluation of phagocytic signaling proteins by Western blot analys...
متن کاملSensing of Bacterial Type IV Secretion via the Unfolded Protein Response
Host cytokine responses to Brucella abortus infection are elicited predominantly by the deployment of a type IV secretion system (T4SS). However, the mechanism by which the T4SS elicits inflammation remains unknown. Here we show that translocation of the T4SS substrate VceC into host cells induces proinflammatory responses. Ectopically expressed VceC interacted with the endoplasmic reticulum (E...
متن کاملCritical role of ASC inflammasomes and bacterial type IV secretion system in caspase-1 activation and host innate resistance to Brucella abortus infection.
Pathogens are detected by innate immune receptors that, upon activation, orchestrate an appropriate immune response. Recent studies revealed the intracellular signaling cascades involved in the TLR-initiated immune response to Brucella abortus infection. However, no report has elucidated the role of inflammasome receptors in Brucella recognition. Therefore, we decided to investigate the functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 198 6 شماره
صفحات -
تاریخ انتشار 2016